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A consistent approach to solving the radiation diffusion equation 

James H. Hammer and Mordecai D. Rosen 

Lawrence Livermore National Laboratory, Livermore, CA 9455 1 

Abstract. Diffusive x-ray-driven heat waves are found in a variety of astrophysical and 

laboratory settings, e.g. in the heating of a hohlraum used for ICF, and hence are of 

intrinsic interest. However, accurate analytic diffusion wave (also called Marshak wave) 

solutions are difficult to obtain due to the strong non-linearity of the radiation diffusion 

equation. The typical approach is to solve near the heat front, and by ansatz apply the 

solution globally. This works fairly well due to “steepness” of the heat front, but energy 

is not conserved and it does not lead to a consistent way of correcting the solution or 

estimating accuracy. We employ the steepness of the front through a perturbation 

expansion in E = b/(4+a), where the internal energy varies as TB and the opacity varies as 

T”. We solve using an iterative approach, equivalent to asymptotic methods that match 

outer (away from the front) and inner (near the front) solutions. Typically E < 0.3. 

Calculations are through first order in E and are accurate to - lo%, which is comparable 

to the inaccuracy from assuming power laws for material properties. We solve for 

supersonic waves with arbitrary drive time history, including the case of a rapidly cooling 

surface, and generalize the method to arbitrary temperature dependence of opacity and 

internal energy. We also solve for subsonic waves with drive temperature varying as a 
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power of time. In the subsonic case, the specific heat, (pressure/density) and opacity are 

each assumed to vary as density to a small power, of order E .  We find the theory 

compares well with radiation hydrodynamics code calculations of the heat front position, 

absorbed flux and ablation pressure. 

PACS 52.25.0s, 52.57.Bc, 95.30.J~ 

I. INTRODUCTION 

Radiation heat waves, or Marshak waves, play an important role in energy 

transport for many astrophysical and laboratory plasmas L1-41. Of particular interest is 

the role of Marshak waves in the energy balance of laser, z-pinch and heavy ion beam 

hohlraums for inertial confinement €usion (ICF) and high energy density physics 

experiments. In these experiments, a power source, e.g. a laser, delivers energy to the 

interior of a high Z cavity that is converted to x-rays 141. Typically, most of the energy is 

absorbed in a thin, diffusively-heated layer on the hohlraum interior surface, and re- 

emission from the heated layer sets the radiation temperature achieved in the hohlraum. 

The physics of the Marshak-wave-heated layer is therefore of critical importance for 

these systems. Marshak waves also appear in a variety of other laboratory experiments 

and astrophysical contexts, e.g. precursors to radiating shock waves. 

A typical Marshak wave solution for the temperature profile within heated 

material is shown in Fig. (1). A long-recognized property of the Marshak wave is the 

“steepness” of the heat front due primarily to the strong non-linear temperature 

dependence of the radiation energy density - T‘. In this paper we develop an analytic 
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theory of Marshak waves exploiting the “steepness” to construct a perturbation theory. 

Corresponding to the steepness is a small parameter E = P/(4+a),where the internal 

energy varies as TP and the opacity varies as T-*. A consistent theory can be built up 

order-by-order in E,  with the benefits of good accuracy and order-by-order energy 

conservation. 

Modem computational codes can readily generate numerical solutions to the 

nonlinear partial differential equations governing Marshak waves, yet an analytic theory 

is still of considerable value for developing insight into the problem. An analytic theory 

also allows rapid scoping calculations for hohlraum design, guides hohlraum material- 

optimization studies, and gives values for the time and angle-dependent albedo ( x-ray 

reemission coefficient) of a hohlraum wall for use in interpretation of experiments. The 

latter topic will be addressed in a follow-on publication. Design of experiments scaling 

one radiation-hydrodynamic system to another, e.g. scaled ICF ignition capsules, can also 

benefit from analytic models [5] .  Finally, the methodology developed here can be 

applied to other nonlinear conduction problems, e.g. electron conduction heat fronts in 

laser-heated plasmas. 

The basic equation for supersonic, diffusive radiative transport in one dimension 

is 

(1)  

where e is the internal energy per unit mass, p is the density, T is the temperature, o is 

the Stefan-Boltzmann constant, K is the Rosseland-mean opacity, t is time, and x is the 

spatial coordinate. For 

supersonic transport we consider the case of constant p, since, by definition, the radiation 

de 4 d  I 
P-=---- 13 3 & K p  & 

e and K are specified functions of p.T. for given materials. 
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is progressing faster than the time scale for hydrodynamic motion to give rise to density 

changes. Typical boundary conditions for the solution of equation (1) are either a known 

surface temperature or incident radiation flux as a function of time. If the material has 

finite thickness, then the temperature or incident flux must be specified on both 

boundaries. We will concentrate on the case with a single boundary, i.e. a semi-infinite 

slab of material whose surface conditions are given. Solutions of equation (1) starting 

from a cold slab show progression of a distinct heat front through the material, i.e. the 

temperature rises abruptly from the ambient values at the front. The temperature as a 

function of position is characteristically steep near the heat front (Fig 1 .) due to the strong 

non-linearity of the equation. 

We can use the “steepness” of the temperature profile to gain insight into the 

nature of the solution through some simple arguments. Since the temperature is spatially 

flat away from the front, the left hand side of eq. (1) tends to be largest near the front 

where T and e vary rapidly. An exception to this occurs when the surface temperature 

changes rapidly, as we discuss in section 1I.C below. In the more typical case, however, 

we can consider the left hand side to be small away from the front, so the temperature 

profile approximately satisfies the steady-state heat flow equation 

-0 a 1 am4 
& K p  & 

Defining the optical depth as z = J Kpdx,  the equation can be rewritten as 

-- -0 d2T 
dz2 (3) 

with solutions T = T , ( I - T / z ~ ) ~ ‘ ~ ,  where T, is the surface temperature and z, is the 

optical depth to the heat front. The 1/4 root in the solution shows why the temperature 
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varies steeply near the front, as we assumed. For the simple case of constant opacity, we 

could also write T = T,(l- x / x ~ ) ” ~  . 

We can find the advance of the front in time by considering conditions near the 

front. The  radiative power per unit area reaching the heat front is 

from our approximate solution for the temperature profile. 4 1 a n 4  I 4 1 ns4 -_ -___ - - - - - 
3 K p  & 3 K p  xF 

The radiative power supplies the internal energy increase caused by motion of the front, 

i.e., as the front advances a greater mass of material is heated to the (nearly uniform) 

temperature behind the front. For the case of T,, constant in time, this gives 

where e, is the internal energy at the surface temperature. We can easily solve this for the 

heat front position, 

a xF 4 1 flS4 
dt 2 3 Kp2 e, 

showing the characteristic tR dependence of diffusion waves. 

( 5 )  

In succeeding sections, we exploit the “steepness” of Marshak waves to construct 

a systematic perturbation solution for a number of cases of interest. The result that the 

lowest order solution is the steady-state solution lies at the heart of the analysis, just as in 

our rough arguments above. 
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The paper proceeds in Sec. I1 with the derivation of analytic solutions to 

supersonic Marshak waves. We consider the case of arbitrary time variation of the 

surface temperature, with material properties varying as p,T power laws in Sec. IIa, and 

comparisons of the perturbation solution with the exact Henyey solution in Sec IIb. In 

Sec. IIc, we consider the case when the surface temperature varies rapidly enough to 

modify the lowest order solution. This is of particular interest for rapidly cooling 

surfaces, such as when the driving power source is turned off and the net flux into the 

material vanishes. Our treatment of supersonic waves concludes in Sec. IId with the 

generalization of the analysis of IIa to the case of non-power law material properties. In 

Sec. 111, we construct perturbation solutions to the subsonic equations for the case that the 

surface temperature varies as e, where self-similar solutions can be sought. Our subsonic 

solutions include the hydrodynamic flow solution as well as values for the ablation 

pressure. 

11. SUPERSONIC WAVES 

A. Power-law material properties 

In this section we analyze equation (1) under the assumption that 

(6) 
e =  fT’p-’, -=gT 1 a p -1 . 

K 

with5 g constants. Inserting eq. (6) into eq. (I), together with p = constant gives 
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T4+a 

Ts 
Next we introduce the dimensionless variable, <(x,t) = 4+a, and the quantity 

H ( t )  = TS4+,, where T, is the time-dependent surface temperature. Using these 

definitions in eq. (7) we obtain 

a d2 
at aSc2 
-H"<"=CH-< 

P E = -  
4 + a  

The parameter E defined in eq. (8) p y s  an important role in our theory. The smallness 

of E (typically < 0.3 for high Z materials in ICF hohlraums) is directly connected to the 

steepness of the temperature profiles. We will employ E as our expansion parameter. 

X It is also useful to introduce a dimensionless spatial variable y = -, where xF is 
XF 

the time-dependent heat front position. Our boundary conditions for <(y,t) are then 

C(0,f) = 1. 

<(l,t)=O., 31 =o. 
4) y=l 

The last condition comes from th- requiremen 

(9) 

that the heat flux as well as the 

temperature must vanish at the front. Using y as the independent variable means we must 

transform the derivative according to 



so that eq(8) becomes 

A final variable transformation is to a dimensionless time s= c d t .  With this 
X F  

change eq. (1 1) becomes 

, etc. so that We are nearly ready to apply perturbation techniques, since -=-- 
aye E ay 
ay re ay 

the left hand side of eq. (12) appears to be a correction of order E. The difficulty comes 

near the front where -- I a' -+- and the expansion technique breaks down ( the - dye 
<I-" ay as 

term goes to zero at the front since [(l,s) = 0 for all s). One approach we have used is to 

find the solution away from the front through an expansion in E, as well as a solution near 

the front found for (1 - y )  << 1, then match in the overlap region where both expansions 

are valid. An algebraically simpler, but equivalent, "trick" is to add a perfect derivative 

term to both sides of eq. (12) that guarantees that the left hand side is uniformly of order 

so that eq. 12 becomes E. By inspection, we see that the term to add is --- 1 &,a' 
x F  as & 

Note that ~ - -  (I - V I  hF " - -&--- (I - ' I  hF " -+ E X  O(1) term even as y + 1 , and the other 
xF as ay xFci -~  as ay 

1 dH 
H as 

terms on the left hand side of 13 area also order E (as long as-- is of order unity - 
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deviations from this are discussed in Sec TIC) . We will apply this trick and its variations 

throughout the paper. The lowest order equation comes from neglecting the left hand 

side, 

Integrating Q. (14) and applying boundary conditions from eq. (9) gives 

Eq. (15) can be integrated, applying the boundary condition y(0,s) = 1 

y =  l-(l-&)--Y [ X F  ' s  jil 
Applying the boundary condition C(l,s) = 0 gives the lowest order equation for the heat 

1 & F -  

x, as 
front (1 - E)  -- - 1, so we have the lowest order solution 

Note this is the steady state solution discussed in Sec I (in normalized variables). The last 

form of <in eq. (17) is sufficiently accurate to substitute into the left hand side of eq (13) 

to obtain the first order corrections. 

In  integrating eq(18), we can replace 5" by 1 to leading order since 

1 1 c d y  = f' (1 - y)'dy = - E 1. Integration of eq.( 18) then gives 
0 0 I-& 
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where we have applied boundary conditions from eq. (9). Eq. (19) can be integrated by 

ay 1 ~ y ' - &  , substituting <" = 1 and -__ & F -  - 1 dividing through by <", using <" - = -- 3Y 1--E 3Y X F  as 

in the order E corrections, and applying the boundary condition <(0,s) = 1. The result is 

a solution accurate to order E: 

H as 
< = 1 - (1 - E )  -- &F y + r(1- [ x F  as 

We can now find the heat front position through order E by applying the boundary 

condition <(l,s) = 0, 

axF - E ~ l d H  
X F  as 2 2 H a s  

(1 - E)-- - 1 + - 

The procedure can be iterated to generate solutions of order E". Omitting the 

straightforward details, we find 

& F -  E &  1 aH E'( 1 aH a 1 aH) (1 -E)--- - 1 + ---(I - E)-- + - 1 + -- + --- 
X F  as 2 2  H as 6 H as as H as 

E2 . 

6 
Since - is usually quite small, we adopt 

1 dx, E 1 aH (1+~ /2 )  --+---= 
xF as 2 H as (1-E) 

as sufficiently accurate (again excluding rapid temperature variation). At this point, it is 

convenient to change back to the dimensional time variable, so eq.(23) gives 

x F  dxF E xF2  aH - (1+&/2) ~- +--- - 
CH'-" at 2 CH2" at (1-E) 

Eq. (24) can be integrated in time to give 
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where C is defined in eq. (7). Eq. (25) is one of our principal results: the heat front 

position for arbitrary time history of the surface temperature. We can also find the 

absorbed heat flux at the surface 

Making use of eq. (19), setting y=O, gives 

l a  
xFHE ds 

= -(1- E)  - - ( xF HE) 

to order E accuracy, Expansion through E? gives an additional term 
4 as H as 

right hand side of eq. (27). Plugging eq. (27) (through first order) into eq. (26) gives 

a 
dt 

( x , H E )  = fpl-' (I - E)  - ( x F  H E )  H l a  F = fp'-'C-(l-&)-- 
X F  xFHE as 

for the absorbed flux. Note that this explicitly guarantees energy conservation since the 

total internal energy is 

E =I p e h  = fp1-'xFH& J' r d y  = fpl-~x,H~(l-&) 
0 0 

dE 
at 

through first order in E. Comparing eq.(28) and eq.(29) shows that F = - as required. 

Returning to eq.(20), we can obtain an explicit expression for the profile by 

substituting eq.(21) for the heat front position. The profile, through order E is given by 
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dH 
dS 

From eq. (30) we see that rising surface temperature, - > 0, causes the [profile to have 

positive curvature, i.e. steeper slope near the surface than near the front, while a cooling 

surface has the opposite effect. 

We can compare our analytic solutions to numerical results from the radiation- 

hydrodynamics code HYDRA [6]. For this purpose we use a fit to the opacity and 

equation of state for gold in the temperature range 1 - 2 HeV (1 HeV = 100 eV) with 

temperature in HeV units and p in g/cc. 

f r 3 . 4  MJ/g p=1.6  p=0.14  

g/cm’ a = 1 . 5  A=0.2 1 
g=- 7200. 

If time is in ns units, then (7 =1.03 x MJ/ns/cm2. For these parameters, E =0.291 and 

the constant C is 4.08 x 10-7/p2-06 cm2/ns. In Fig. 2 we compare the heat front position 

from eq. (25) and absorbed flux from eq. (28) with the code, for the indicated temperature 

drive. The surface temperature differs slightly from the incident flux temperature due to 

the Milne effect, as discussed below. Comparisons were made employing the actual 

surface temperature. Figure 3 shows the numerical and analytic spatial profiles for ( at t 

= 1.5 ns. Hydrodynamic motion was turned off for the simulation, which solved the grey 

diffusion equation employing the power law opacity and internal energy model specified 

in eq. (31). 

B. Comparison with exact analytic (“Henyey”) solutions 

As a test of our solution to I3q. (7), namely I3q. (30) supplemented by Eq. (25), we 

compare our predictions for two special cases in which particular choices for the time 
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behavior of the surface temperature T, lead to exact analytic solutions to Eq. (7). These 

solutions were found by Louis Henyey in 1954. Since they are unpublished we present 

their derivation in Appendix A. Here we quote the results and compare them (suitably 

expanded in E) to our solution. Henyey considered the quantity U(x,t) = p+a-B (x,t) 

(= H’.“ ( t)  

an exact solution to Eq. (7) for T(x,t) such that U(x,t) is in the form 

(x,t) in our notation). He set out to find that choice of TJt )  that can lead to 

U(x,t) = a(t) + b(t) x + c(t) 2. (32) 

Henyey found two such choices for T,(t) and their associated exact solutions for U(x,t). 

The first special case is the simple case of c ( t )  = 0, (see Appendix A) for which there 

is an exact solution: 

(33) a(t) = To 4+a-B t and b(t) = - (1- E) lo C To (4+a-L3)’2 

(thus b(t) is constant in time). This expression for 

T(x, t): 

U(x,t) can be rewritten in terms of 

(34) 144 + a - Bj with (1 - dxFHY) 

XFHy (t)= ( 1  - E)  -lo C To (4+a-B)0 t. 

1/(4 + a - B) 
THy t x y t )  = TO 

This THY (x,t) solves Eq. (7) exactly. (The subscript Hy denotes exact Henyey solution). 

We now check our theory’s solution to Eq. (7), for that given input, namely 

H1-“ ( t )  = To 4+a-B t. Inserting that value for H into Eq. (25) gives a “predicted” 

X F  (t) = ((1 + d2) / ( I -  &/2)) c In To (4+a-B)D t (35) 

which indeed matches xFHY through order E. Moreover, inserting that same H into Eq. (30) 

gives a “predicted” 

= ((1-y)(I --(U(t?))y) = ( I -y)  through order E, (36) 
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which indeed matches We note, at this point, that if T d t )  behaved as t for 

arbitrary k,  (and not just for the value k = 1/(4+a-p) as chosen above) then Eq. (30) gives 

c'-' = ( I - y )  ( I + d2 { I -[(2+~) / ( ] - E )  ] [ @/(bk + E)] } y ) (37) 

which means that < @,t) no longer has any explicit time dependence (only implicit time 

dependence through y(t)) and is thus a self similar profile [ = [ ( y ) .  The self-similarity is 

retained for T,(t) - even when hydrodynamic effects are important as we see in Sec. I11 

below. 

The second special case is the full Henyey solution ( c(t)# 0) (again, see Appendix 

A). We define p = ( I - & )  / ( I  +E),  q = 1-p, K = 2C/q,  and a time variable w = (IUA)t + 1. 

We consider a particular surface time behavior Us,, (t) = (B2/4A) w-' ( w 9 - I ) .  The 

constants A, B are arbitrary but can be related to the drive magnitude and duration. This 

behavior can describe an x-ray drive source that is often quite relevant, in that it rises in 

time, peaks at time wpeak=(IUA)tpenk + 1 = p-'l9 to a value USmox= (B2/4A)pp/gq, and then 

falls slowly in time. In practice, we pick tpeakand Us- in order to match some relevant 

experimental x-ray drive, and the choice of tpe,determines A and the choice of Us,, then 

determines B2 (and B is taken as the negative square root of 4AUs,,JpP/qq). Most 

importantly, this particular time behavior leads to an exact solution of E@. (7) for T(x,t), 

which is equivalent to: 

(uHy (x,t) 1 usHy ( t ) )  = 1 - i [x ( I - ( a ) ) I  / [ xFHY (1- (xFHY /B))I 1, 

x F , ,  ( t )  = (-BE) ( w qn -1). 

with (38) 

Note that with this convenient functional form of U , ,  (XJ)  it is immediately obvious that 

UHy (x=O,t) = Us,, ( t )  = HI-' ( t ) ,  and U,, (x=x,,,,t) = 0, both conditions fulfilling the 

requirements on [of E@. (9). Note too that the shape of this U profile is essentially the 
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“right shoulder” of an inverted parabola in the upper right hand quadrant of U (y axis), x 

(x axis) space whose true peak lies in the upper left quadrant. 

To verify that our equations predict this solution (through order E )  when given the 

Us,, ( t )  discussed above, is tedious but doable. We must expand some terms carefully to 

order 2. For example, the term (wq-1) that appears in Us,  (t),  using q= 2d(l+&), is 

expanded to be 2E(l-~) lnw + 22(lnw)’. The input to our solution, H ( t )  = (UsHy (t)  ) 

is then found by expanding in E, and then integrated in time as a necessary ingredient in 

Eq. (25). The integral can be done analytically, order by order, and omitting the details, 

Eq. (25) finally yields: 

1/ (1 -€)  

xF ( t )  = -(BL?) E lnw [ I - &  + (d2)lnw]. (39) 

But that is precisely the expansion of xF,, ( t )  = (-B/2) ( w q/2 -1) through order 2, thus 

verifying our approach. 

Checking Eq. (30) is considerably less tedious, as the d 2  coefficient therein 

allows us to restrict our attention to H(t)  to leading order, namely (B2/4A) 2 ~ Z n w  /w. 

Thus, Eq. (30) then gives: 

cl-E = (1-y)(l +[(d2)  lnwly)  = (1-y)(l-dB). 

Meanwhile the exact solution, quoted above, 

( UH, (x,t)/ UsHy ( t ) )  = ~‘ -~cb ’ - ‘  / HI-‘  = 

Cbl-‘ I x  ( I - ( ~ B ) ) I  / [ x F H y  (1- ( x F H y  /B))I 1, (41) 

can be expanded and, after dropping terms of order (x/B)’ < ( x F / B ) ~  = O(t?), can be 

rewritten as = (1  -y)(l - d B )  thus showing agreement with our predicted solution. 
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B. Rapid time variation of the surface temperature 

We can extend the analysis in Sec. IIa to the case of rapid time variation of the 

surface temperature, for a special functional form of the time dependence. The special 

form is applicable, in particular to the case of low or zero net flux into the surface as 

could occur, for example, if the driving source of a hohlraum were turned off. Starting 

1 aH 
H as 

with eq. (13), we consider the case when &--~iiS of order unity rather than E. The 

leading order equation then becomes 

E 1 aH 
2 H  as 

2=--- 

where the defined quantity z is assumed of order unity. In analogy with the development 

above, we can integrate eq. (42) to find the lowest order equation for the heat front 

position (I - E)  = 1 - z , and the profile, 
XF as 

1 

c = ((I - y)(l - 2y))l-r = (1 - y)(l - zy) (43) 

Note that we are restricted to z<l to avoid 5 -+ 0 for y between 0 and 1. Also note that 

for z = -1 the slope of c vanishes at y = 0 and there is no lowest order heat flux. We can 

employ the lowest order solution from eq. (43) in the terms of order E in eq. (13), and 

integrate to find the corrections. We make extensive use of the approximation 

N E  = e & l n ( N )  - 1 + &ln(N) to first order in E, for any N of order unity. The results for the 

corrected heat front position and flux are 
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d 
at 

F = fpl-P -((l --EB)x,H&) 

The terms A and B appearing in eq. (44) are given by 

If IzI << 1 we recover the previous result with A,B + 1. Over the range of z from -1 to 1 

we have 

0 5 A I 3  2(1-ln(2)) I B 5 2 (46) 

162 
2 as 

The analysis we have used is only valid if -- = O(1). From the definition of z, this 

demands that 

1 aH 22 1 
H as -E E 

but since -- = - = 8(-), the two terms in eq. (47) must nearly cancel. This, in turn, 

requires that z must be nearly constant for the analysis in this section to apply. The 

special time profiles are of the form 

225 - 
, H=H,e'  I aH - 2z 

H as -E 

Through first order, the equation for x is 

From the definition of the dimensionless time introduced in eq. (12) we have 
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ds CHI" - CHt-' (:-I) -- - 
2 2 e  

dt xF XO 

through first order. Eq. 50 can be integrated to find s(t), 

-1 
S= 

2(Z/E-l) 

Plugging eq. (51) into eq. (48) the gives time dependent surface temperature associated 

with a given value of z. 

H =  HO I 

Our solutions for rapid surface temperature variation only apply if the time-dependence is 

in accord with eq. (52). 

For a cooling hohlraum or other situation where the net flux into the surface drops 

to low value once the driving source is extinguished, we expect that surface temperature 

would rapidly tend toward the form of eq. (52) with z =-I after a transient phase. If we 

2 

define to=  xo as a characteristic time during which the surface was driven at 
2CH,'" 

1 
surface temperature T, = H O G ,  with Marshak wave penetration depth x0, then the 

surface cools according to 

i.e., the characteristic time for cooling is t, = 5, much shorter than the initial drive 
1 + E  

duration to. 
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C. Arbitrary material properties 

We can also extend the analysis in Sec. IIa to the case of arbitrary temperature 

dependence of the internal energy and opacity, as well as arbitrary time dependence of 

the surface temperature. Our extended theory has the added benefit that one could 

include flux limits, which are usually treated through a modification of the opacity, or the 

radiation energy density, which is additive to the internal energy. The internal energy 

must not vary too fast with temperature (so that the analog of the parameter E exists) and 

the surface temperature variation in time must also not be so fast that the corrections 

discussed in Sec. IIc are important. Our starting point is eq. (I), but let us introduce a 

new independent variable 

Z(T) provides a single-valued mapping that can be inverted, in principal, to give T(Z) 

once we obtain a solution for Z ( x , t ) .  Note that for a power-law opacity, 

K = T-a, Z= T4+" = c, the dependent variable used in previous sections. In terms of Z, 

eq.( 1) becomes 

160 D=- 
3P2 

(55 )  
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We can also consider e as a function of 2, i.e., e(2) = e(T(Z)) . As in earlier sections, it is 

X helpful to transform to dependent variable y = -. Employing the transformation of the 
X F  

time derivative shown in eq. (lo), we obtain 

2 .  . de d2z xF e - x F x F y  - = D7 
a y a y  

where the notation e = has been introduced. This can also be expressed as 
d t  

d2Z 
X F  2 - X F X F Y  - - = D- [ 2 ’  :); &2 

(57) 

From the similarity with the Sec. IIa analysis, we expect perturbation solutions to exist 

- E .  We For power law opacity and internal energy, in fact, -- - Z de Z de 
e dZ e dZ 

when -- << 1. 

de 
dZ 

have the same difficulty near the heat front, y = l ,  that we found in Sec. IIa, Le., - 4 00 

as the temperature and Z vanish. Accordingly, we use the “trick” that makes the left hand 

side uniformly small 

X F X F  -- J Z d e  d y  d z -  - - bjDz+ d d Z  .FXFe) (58)  

The lowest order solution is found by setting the right hand side to zero and integrating. 

d Z  The boundary conditions at the heat front are that Z and 7 vanish, so we find to lowest 

order 

t3Z 
J Y  

D-+ x,x,e = O  

20 
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where we have assumed that the internal energy vanishes as T and Z go to zero. Since e 

is a weak function of Z,  it is adequate to replace e by e,, the value at the surface when 

integrating eq. (59). This is equivalent to replacing (" by 1 in the low order integrals in 

Sec. IIa. We then find the lowest order solution 

where Z,(t) is the surface value of Z. Applying the boundary condition at the heat front 

gives 

z = z, (1 - y ) 
. DZ, 

X F X F  =- 
e, 

for the lowest order profile and heat front position. Note that the familiar steady-state 

profile re-emerges as the lowest order solution. From eq. (61) we have to lowest order 

Z S  az 
2, ay 

2 = -2 and - = -Z,for use on the left hand side of eq. (58). We then find 

becomes the equation through first order. Integrating eq. (62) and applying the boundary 

conditions at the heat front gives 

Next we make use of the linear relationship between Z and y in eq. (61) to replace the 

dZ integral over y with an integral over Z, with dy = --: 
Z S  

de(Z') d Z  (F - x F 2  $)! dZ'Z'- = D- + xFxFe  
dZ' a Y  
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Integrating a second time gives us 

[ [ x<F x: g)! dy d2'Z'- de (2') D(Z-Z,)+x,x, dye= -- 
ZS' dZ' 

We find the equation for the heat front position by demanding Z(1,t) = 0. In the first 

order corrections on the right hand side of eq. (65) we can again replace the integral over 

y with an integral over 2. This also works for the term on the left hand side of eq. (65) 

since 

J d y e =  Jdye ,+  Jdy(e-e,)=es+ J dy(e-e,) 
0 0 0 0 

The term J dy(e -es)is a first order correction, where we can again convert it into an 
0 

integral over Z, so 

l Z  l Z  J dye = e, + - - p dZ'(e(Z') -e,) = J dZ'e(Z') 

Our equation for the heat front then becomes 

Regrouping terms gives 

If we define the quantity L as 

l Z  de(Z') L(Z) = - I dZ'e(Z') - 47 dZ f dZ'Z'--- zs 0 zs 0 0 dZ' 

then it is straightforward to show that eq. (69) can be expressed as 

xFxFL+ x F 2  6 = DZ, 
2 
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and eq. (71) can be integrated in time to give 

where the expression for L(Z) was found from eq. (70) by integration by parts, and we 

have included the explicit transformation back to temperature. The heat front position is 

then known for any specified K(T), e(T) and time-dependent surface temperature Ts(t). 

To calculate the heat flux 

we make use of our first order expression in eq. (64) 

de(Z') 
F = pesxF - {$ - xF $1 dZ'Z'--- 

dZ' 

. z  

Integrating by parts and regrouping terms we find 

(74) 

Once again we find that energy conservation is guaranteed through first order since, by 

l Z  

2 s  0 0 

eq. (67) we have pxF - I dZ'e(2') = pg dx e = E and eq. (75) is equivalent to F = E. 
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111. SUBSONIC WAVES 

In this section we construct perturbation solutions to the subsonic equations for 

the case that the surface temperature varies as tk, where self-similar solutions exist. Our 

subsonic solutions include the hydrodynamic flow solution as well as values for the 

ablation pressure. In the subsonic case, the specific heat, (pressure/density) and opacity 

are each assumed to vary as density to a small power, of order E. 

The general theory of self-similar, sub-sonic Marshak waves was developed in 

Ref. [7,8]. Ref. [7] contains a thorough description of the self-similar model and the 

limits of validity, in particular the approximation that the density effectively goes to 

infinity at the ablation front. This corresponds, physically, to the fact that the ablated 

density is much less than the solid material for many cases of interest, e.g. an ICF 

hohlraum wall. 

A. Basic equations 

The basic equations in Lagrangean form are 
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1 .  
P 

where V = - is the specific mass, u is the flow velocity, P is the pressure and the mass 

variable rn = J p&. The effectively-infinite density at the ablation front means that we 

have the boundary conditions u,V,T -+ 0 at the heat front as well as T(0,t) = T,(t). We 

again assume power-law dependence of opacity and equation of state variables as in Sec. 

IIa above. 

(77) 
1 e 
K V 

e = f Tf iVp,  - = gTaVA, p = r- = rlfTfiVp'-' 

The parameter p and r are assumed to be of order E (typical values for gold at 1-2 HeV 

are p = 0.14 and r =0.25). We use a formulation of the equations from Munro [9] that 

allows a somewhat more general equation of state than employed in Ref. [7] .  Employing 

rn 

mF 

the self-similar ansatz, the quantity y = -, with rnF the mass coordinate of the heat 

x .  front, becomes the similarity variable (analogous to y = - in sections above). We have 
X F  

We use the same names for the dimensional and dimensionless scaled variables T,V, etc. 

to avoid a proliferation of notation. We are free to choose any convenient time scale 

factor ts, (the quantitative result is, of course, independent of the choice of ts). We can 

also specify the surface temperature T, and the power-law k,  i.e. our convention is the 

dimensionless T(1) = 1. The similarity exponents n,Z,j are found from inserting the 
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similarity forms from eq. (78) into eq. (76) and demanding consistency of powers of 

time. The result, without expansion in E is 

1-(l-2E)qo 
2+a-2p 

1 =  

l = l - n + j  
qo = (4 + a ) k  

We will assume qo, the similarity exponent for T4+a,  is of order unity. Inspection of 

eq. (79) shows that j is of order E while n and 1 are of order unity with I = 1 - n to lowest 

order. To avoid singular time-behavior of the density, we require I > 0, which places 

limits on the allowable rate of rise of the surface temperature (qo <1/(1-2&)). This 

requirement means that, to lowest order, n F (1 + q0)/2 is in the range 112 to 1. 

The equations can take on different form, depending on the choice of scale factors 

us,Vs in eq. (78). If we demand that the variable y=l at the heat front, we are not free to 

independently choose mFo- If we choose scale factors 

1 

rf ts2Tsp 

and define the dimensionless parameter r by 

then the equations become 
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where we have introduced the dimensionless variable < = T4+a,  as in Sec. IIa. In contrast 

to earlier sections, the lowest order solution away from the front is found from 

I V -=constant 
aY 

As we will see below, the lowest order solution for V away from the front has V 0~ y-', so 

integrating eq. (83) gives < = A  + By"A, with A and B determined by the boundary 

conditions at y = 0,l , i.e., 

< = 1 - $ + A  (84) 

We can use eq. (84) in the first order corrections to the heat flow equation, as well as the 

hydro equations. Since < appears only as { E  in the hydro equations, it will turn out that 

eq. (84) is sufficiently accurate for a hydro solution through first order. This fortunate de- 

coupling of the hydro and heat equations allows us to use the hydro solution in the first 

order corrections to the heat equation. 

B. Hydrodynamic solution 

Starting from the hydrodynamic equations in eq. (82) and introducing the variable W=Vy, 

we can write, 
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W j  U (1-n)-+-(W 
Y Y  n 

Eq. (85) can be rearranged to give 

There are two regions of singular behavior where th- otherwise order E effec ; become 

large, i.e., very close to y=O, where V + and the flow velocity u -+ 00 and near the 

heat front, y = l .  If we are not too close to either region, eq. (86) becomes, to lowest 

order, 

aw w 
y-=- 

a y n  
(87) 

1 The solution of eq. (87) that is well behaved as y becomes small is simply W = T, a 
n 

constant. Note that W constant means that Vmy-'as we assumed for the lowest order 

solution for [above. Equation (86) is somewhat awkward to deal with because of the 

various singularities. It is helpful to introduce the variable H (different than the H 

defined in Sec II) defined as 

H = l [ W + g ]  2 

Note that as we approach the heat front, W -+O,y+l ,  we see that 

1 1 
2n 2n 

H -+ 7 CVp'-' = 7 PAblme, where PAblnte is the dimensionless ablation pressure. The 

equation for H can be found from eq. (85) 
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- -  
We define H ,  W as the solution to eq.s (86-89) ignoring the corrections due t o j  and p, 

but allowing for finite E and d. We will find t h e j  and p corrections later below. Q. (89) 

becomes 

2n 2n 

where we have used 

from solving eq. (88) for Win terms of g .  The quadratic equation (88) has two roots, 

but choosing the root given in eq. (91) guarantees that w -+ Oat the heat front. The roots 

r" r" could cross if K 2  = 2, but from eq. (88), that also requires w2 = 2. Inspection of eq. 
n n 

r" (86) with p=j=O then shows that the w2 =2 causes the denominator to vanish. 
n 

1 As y -+ 0 the well-behaved solution is w + -, which is below the value where the &i 
1 .  
n 

denominator vanishes at w = - , if n < 1. n < 1 is required to lowest order and, for the 

moment, we are ignoring the corrections for finitej, so n is strictly less than 1. In any 

case, we will not consider n 2 1. Further inspection of eq. (86) with p = j = 0 shows that, 

r" once below the curve w2 = 1, the solution remains below the curve, the denominator 
n 

never vanishes and the root given in eq. (91) applies throughout the domain. 
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l + n  = - As y + 0, eq. (90) gives Away from the heat front we can 2 n 3 / 2  . 

expand r" = 1 + &ln(<) in eq. (9 1) and find the order E corrections to e. We see that is 

nearly constant throughout 

- 
s o l u t i o n  f o r  W 

l + n  
2n 

the domain with = 3/2 plus order E corrections. The 

a t  y=O a n d  1 
v a r i e s  b e t w e e n  - & 

H(1)- H(1)2 -% = H(1 J n 
r" near the heat front. The 

asymptotic behavior suggests that 

- r "  =x 
might be a reasonable approximation for f throughout the domain, even though the 

slope in the vicinity of the heat front is not, in general, correct. Numerical integration of 

eq. (90) for a wide range of E, n shows that eq. (92) is accurate to a surprising degree, 

apparently = Plugging eq. (92) into eq. (90) gives us the corrections to e at the 

heat front 

,using eq. (84) for <, is accurate to about 5% i+a where the expression for I dy = 
0 l + d + &  

for any A, and of higher accuracy at small A. 

At this point, we can also find the lowest order solution for the flow velocity. 

Integrating the first equation in the set from eq. (82) we have 
- 
W 
Y 

u =  I - d y - n W  (94) 
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which to lowest order, applying the boundary condition u(1) = 0 gives simply 

We are now set to include the corrections for finite j ,  p .  Fortunately, the 

dominant contribution to these corrections comes from near y=O, and we can consider the 

lowest order Wand H as constants in this region. Returning to eq. (88) and eq. (89) and 

assuming W = W + W ,  H = E + SH and linearizing the equation we find 

(96) - (1-n)- 

y-SH+ d =-[-I p l + n  ln(v)yB - - +&(w-:) 
ay E-W 2n2 2n H - W  

l + n  - 1 
2n3i2 n 

- 
Inserting H =- , W = 112 into eq. (96) gives 

where we have also made use of the lowest order flow velocity from eq. (95). Eq. (97) 

explicitly demonstrates the difficulties of the limit n = l .  We can use the relation 

- -a  U+nt  - 2 U+n) a 2 
ay 1-n 

y-6H + -SH = multiply through by y(l-n) and integrate to find the 

corrections 

m 
W 4 4n 2n 2 

SH(1) (1-n)(1+3n) p 
H 4n( l+n)  4 

- = + L - w]+ ;[ ln(l/(yn1/2)) - 

= j  +-(l-n-ln(n)) 
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We have evaluated 6Hat the heat front since we are interested in H(1) to find the 

ablation pressure. With eq. (98) we have the hydrodynamic solution for N,Wthrough 

order E. 

The ablation pressure is then, through order E, 

PAblnte = 2n2H(1) = 

(100) 1 (1 - n)(l+ 3n) p + -(I - n - In(n)) 
4n( l+n)  4 

n*I2(1 + n )  ‘+a [ l + j  i + a + &  
Equation (99) for W and the lowest order flow velocity solution in eq. (95) are of 

sufficient accuracy to allow us to calculate corrections to the heat flow in the next 

section. 

C. Heat flow solution 

Next we consider the energy transport equation from eq. (82). We start by applying a 

version of the “trick” discussed in Sec. I1 to add perfect derivative terms to both sides of 

the equation to remove a singularity from the left hand side, 

We have also used W = V y where convenient in eq. (101). The term proportional to 

m .  - IS problematic since it is also singular near the front. We can make use of the fact 
8Y 
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yBVP that - = n2(2H - W )  from eq. (88) and use eq. (89) to manipulate the singular term 
W 

into a perfect derivative term (analogous to the “trick”), 

Except for weak, integrable singularities near y=O, the left hand side of eq. (102) is 

uniformly of order E, so we can substitute lower order solutions into the left hand side 

and integrate to find corrected solutions. We can do this formally (and exactly) first, then 

plug in the lower order solutions later. Integrating eq. (102) and applying the boundary 

ac 
?Y 

conditions <,-7W + 0 at y=l ,  we have, 

+ rn2 (I + fi) f W dy + r j  n f W (W - E) dy 
n 2 1  1 

1 ac w 2  y c v p  = r v  -+ n < W @  + m3y(-+7) 
aY  2 n  

Multiplying through by VA7 integrating a second time and applying the boundary 

conditions c(0) = 1 ., <(l) = 0 gives us an equation for the quantity r. 

w 2  ye,@ 
= -I? + n dy V A c E W  + m3 1 dy V-’y(- +-) 

0 0 2 n2 
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Eiq. (104) can be evaluated to the desired order by substituting in the solutions for [, W,  

and V= W/y. For instance, to lowest order, we find simply r = n. We obtain first order 

1 
answers by substituting< = 1 - yl", W = -. The higher order hydro solution above & 
allows us to evaluate many of the integrals to 2, which we include since it gives 

improved comparison with calculations, although formally the result is accurate only to 

first order. 

Substituting in we find, 

A complete second order solution is beyond the scope of this work. 

n rn2 r n  +-+-+- 
D5 40, 20, 

where 

3 3 1  
2 2 2  

Di =l+-&+-A--p 

3 
2 

D, = I +  --E+ 3a+  LL 

o3 = 1 + 3&+ -A 3 j  + - (3n + 2)  + -(In(n) LL + n) 2 2n 2 
D4 =1 

D5 = (1+ A)(l+&+ @-A)(&+ -(1+ 3J n)+ -(ln(n) LL + n -1))) 4 n  4 

D, = I +  3 ~ +  - A +  1 J  -(3n + 2)+ -(ln(n)+ LL n) 2 2n 2 
I L L  D, =i+3&+-a- -  
2 2  

We have assumed A of order E in evaluating the quantities in eq. (106). A complete 

second order solution would include modifications to D, at first order and D, at second 
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order from the first order solution . The net heat flux into the surface is found from eq. 

(103), evaluated at y=O. Evaluating the required integrals gives 

0 9  

n rn(1 + - + j )  
+ 2 + r j ( l +  n )  

4 0  

with constants 

D8 =l+&-P  
o9 = i + i . n + + + 0 . 7 p  

3.i I.1 4, = 1 + 2&+ -(l+ n )  + -(ln(n) + n - 1) 
2n 2 

A consistent second order solution would include modifications of D, due to < I -  

D. Subsonic results 

Once we have these expressions for r, -TV - , we can find dimensional :ly=o 
quantities by use of the scale factors defined in eq. (80) and the definition of r i n  eq. 

(81). For the ablated mass we find 
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With mFo from eq. (log), we can use eq. (SO) to evaluate the specific volume scale factor 

1 

rP, f t,’TSB 
V, =( ] , where we have introduced a pressure scale factor for consistency 

mFO 

of units, e.g., if we use megajoules for energy and nanoseconds for time, then P, = lo-’ to 

give V, in cubic centimeters per gram. The dimensional heat flux is given by 

F=rn,ofV,pT,B -TV - [ i”m-.) 
and the dimensional ablation pressure (in energy per unit volume) is 

(1 11) B P-1 
p =  rf ‘S ‘S ’Ablate 

with the dimensionless factor PAblnte given in eq. (100). 

We can compare the analytic theory to HYDRA simulations using the model 

parameters given in eq. (31). In addition to the eq. (31) parameters we must specify 

P 
Pe 

r = -, and choose a temperature power-law in time. We find r = 0.25 to be a good fit to 

gold in the 1 -2 HeV temperature range. Comparisons are shown for the ablated mass, 

absorbed flux and ablation pressure in Fig. 4(b-d) for qo=l, T,=l HeV, and using a time 

1 - 
scale factor t,=I ns, Le., ~ , ( t ) =  t 4 + a  = 

and W(y) at t=3 ns. 

. In Fig. 5(a,b) we compare the profile of [(y) 

For our nominal values for 1-2 HeV gold, we have = 1.6, a=l,.xgiving 

E = 0.291), p = 0.14, d 4.2, r = 0.25 These give self-similar time dependencies for the 

ablated mass, absorbed flux and ablation pressure of 

1.914 05156 m ( t )  = moTs(t) t . 

F ( t ) =  FoTs(t) t 3.346 -04115 

2.630 -04479 P ( t )  = PoTs(t) t 
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40 
with T,(t) = Totk = T0t5.sfor To in HeV and t in ns. The quantities mo,Fo,P0 are shown as 

functions of qo in Fig. 6 (a-c). Some specific values are 

qa = 0.0 1 .o 
mo = 9.5 1 x 10" g/cm2 

F, = 3.44 x MJ/ns/cm2 F, = 4.70 x MJ/ns/cm2 
Po = 2.79MB Po =3.29MB 

rn, = 7.13 x 10" g/cm2 

V. CONCLUSION 

In this work, we have developed a perturbation technique for solving the 

nonlinear radiation diffusion equation for a variety of cases of interest. The method has 

considerable power for generating explicit solutions to problems, in the supersonic limit, 

with arbitrary surface temperature time history and even arbitrary variation of material 

properties with temperature. Quantities of practical interest such as the depth of heat front 

penetration and absorbed heat flux can be readily found. In the subsonic limit, where 

hydrodynamic effects play a substantial role, the model is restricted to surface 

temperature variation T - t" and power-law temperature dependence of material 

properties. We are able to find, however, explicit expressions for ablated mass, the 

absorbed heat flux and ablation pressure in good agreement with numerical solutions. 
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Appendix A. 

In this Appendix, we present a more complete background to the exact analytic 

solutions referred to in Sec IIb. A section of an unpublished LLNL report ( UCRL-4428 

(Dec. 16, 1954) by William Grassberger and Louis Henyey) reports on, and attributes, 

these solutions to Henyey. Since this report is unavailable in general, we present the 

derivation herein. Defining U=T""B we seek solutions of Eq. (7) for T(x,t) such that 

U (x,t) can be written as: 

U(x,t) = a(t) + b(t) x + c(t) A?. (A. 1) 

Inserting this ansatz into Eq. (7) and equating the 0,1, and 2 powers of x yields three 

equations: 

- _  db - C ( 4 { 2 b c  + ( 4P )bc} 
dt P 4+a-/3 

dc=c(4+a)c2+( 48 )CZ} 
dt P 4 + a - p  

As a "tune up" to solving this full set, consider the simple case of setting c(t)=O. 

Then Eq. (A.3) yields b = constant, and then Eq. (A.2) yields a(t) = C[(I/(I-&)]b2t.  But 

a(t) is identical, by ansatz, to U(x=O,t) = TFa-p (t). Therefore we can write immediately 
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that Ts=T0t1/4+a-B, and express a and b in terms of To, e.g., b= C1/Z(l-~) lRTf+"+byZ.  We 

can then rewrite T(x,t) in the useful form: 

with (A.5) 1 / ( 4 + a - p )  (1 - ~ x F H J  
144 + a - 0) THY ( ~ ~ 1 )  = To t 

xFHy ( t )  = ( 1  - E) -lR C To t. (A.6) 

This THY (x,t) solves Eq. (7) exactly. (The subscript Hy denotes exact Henyey solution). 

The lesson from this simple exercise is that it takes a specific time behavior of Ts ( t )  (or 

UJt ) )  to lead to an exact solution to Eq. (7) for T(x,t) that would allow U(x,t) to be in the 

form of Eq. (A.1). 

To solve the full set of Eqs. (A.2)-(A.4) we start with Eq. (A.4). To simplify 

notation we define p = (1 -E)  / (1  +E),  and K = 2 C / q .  Then Eq (A.4) yields dc/dt = Kcz 

or: 

c(t) = -1 / ( K t  + A)  where A will be determined later. (A.7) 

Let us denote the quantity (Kt + A) as a new time variable z, so c = -UT. Turning now 

to Eq. (A.3) we see that it bears a striking resemblance to Eq. (A.4) yielding db/dt = Kbc 

which immediately tells us that b(t) = -Bc(t) where B is a negative constant to be 

determined later. Thus we can write 

b(t) = B/ Z. (A.8) 

With that result, Eq. (A.2) now simplifies slightly: 

Equation (A.9) has a particular solution: a ( t )  = B2 c(t) / 4  (which makes it look 

like Eq. (A.4) again) as well as a homogeneous solution a (t)  = y rep where y will be 

determined later. Thus, in sum; 

a(t) = (-B2 z-' / 4  ) + y rep , and therefore; (A. 10) 
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UHy(X,f) = [ ( - B 2 2 - ' / 4 )  y f p  ] + ( B f ' ) X  - ( Z - ' ) J .  (A. 11) 

If we insist that U (0 , t )  behaves in a reasonable way, namely that U(0, t=O)  = 0 then y is 

determined and must be: 

y = B2 Aq / 4  where q = 1-p. (A. 12) 

Defining a new time variable w = z / A  = (KIA) t + 1 we can now write 

UsHY(x=O, W )  = ( B2/4A) W-' ( W' - 1 ) (A.13) 

This is a surface source that rises from zero, and at a time fpeak. which is given by wpeak = 

( U A )  tped + I  = pi''') , reaches a maximum value, U,,, = (@/4A) p'p'q)q, and then falls 

off at later times. It is this particular surface source, UsHy(x=O,t), that leads to the exact 

solution given by l3q. (A. 11). To apply this formula to situations of experimental interest 

the user has the freedom to pick A in order to match the experimental drive's tPerrk, and 

then to pick B to match the experiment's peak drive. (This is still no guarantee that the 

exact shape of the rise and fall of the experimental drive will match Eq. (A.13) but it 

might be close enough in many a situation.) 

The heat front velocity xF is defined by UHy(x=+,f) = 0. So, finding the root of the 

quadratic equation UH,,(XF,t) = 0 from (Eq. A. 1 1) we find: 

xFHy(f) = ( - B L )  ( We - I )  (A. 14) 

Using this expression, we can manipulate Fq. (A.13) into the following elegant form: 

(A. 15) 
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In this form it is rather transparent that at x=O, U = U,,(O,t) and that at x = xF, U=O. We 

also see that the profile is that of the “right shoulder” of an inverted parabola (remember, 

B is a negative quantity) that occupies the upper right hand quadrant of the U-x plane, as 

it descends from the parabola’s peak, which occurs in the upper left hand quadrant. 

Figure captions. 

Fig. 1). Temperature profile for a supersonic Marshak wave at 3ns, from the simulation 

shown Fig. 2. 

Fig. 2a.) The temperature drive used for a supersonic test problem. b.) The heat front 

position vs. time from the HYDRA simulation (black) and the analytic model (red). c.) 

The absorbed heat flux vs. time from the HYDRA simulation (black) and the analytic 

model (red). The mass density used in the simulations is 0.2 g/cc. 

Fig. 3). Comparison of < profiles from the HYDRA simulation (black) and the analytic 

model (red) at a.) t = 1.5 ns and b.) 2.0 ns. 

Fig. 4). Comparison of subsonic analytic theory (red) with HYDRA simulations (black) 

for the temperature drive shown in a), corresponding to qo=I ,  i.e. <- t .  Time-dependent 

quantities shown are b) the ablated mass, c) the absorbed flux and d) the ablation 

pressure. 
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Fig. 5 )  Comparison of subsonic analytic theory (red) with HYDRA simulations (black) 

for the temperature drive shown in 4a), corresponding to qO=I,  i.e. [- t. a) shows the 

profile of [(y) at t = 3.0 ns. b) shows W(y) at t =3.0 ns 

Fig. 6. a) m, in g/cm2, b) Po in M B  and c) F, in MJ/cm2/ns for the nominal material 

properties of gold in the range 1 - 2 HeV. The points shown in c) are from Ref.[10] 

This work was performed under the auspices of the U.S. Department of Energy by the University 
of California, Lawrence Livennore National Laboratory under Contract No. W-7405-Eng-48. 
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